Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 47(9): 7265-7272, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32740794

RESUMO

Rheumatoid Arthritis (RA) is an autoimmune disease with unknown etiology and a global incidence around 1%, a positive family history increases the risk of RA roughly three to five times. Pain is one of the first symptoms to appear in this disease. MicroRNAs (miRNAs) belong to the class of small non-coding RNAs; they regulate multiple cellular processes including embryonic development, cellular proliferation, differentiation and apoptosis among others. A great deal of evidence points to the employment of miRNAs as therapeutic targets and biomarkers for several pathologies. The main objective of this Review is to assess how miRNAs participate in the pathogenesis of RA. Two advanced searches were conducted in databases, one using "micro-RNA" and "rheumatoid arthritis" as key words, and another one with "micro-RNA", "pain" and "nociception". In this Review, we describe how six miRNAs: miR-16-5p, miR-23b-3b, miR-124-3p, miR-146a-5p, miR-155-5p and miR-223-3p, involved in the modulation and transmission of the nociceptive input are unregulated in RA patients. Key molecular pathways involved in nociception, inflammation and autoimmune responses, are regulated by these miRNAs; the NF-κB, TNF-α, interleukins and TLR4. By means of gene repression, the miRNAs here described modulate the nociceptive process as well as the autoimmune response that characterize this disease.


Assuntos
Artrite Reumatoide/metabolismo , Regulação da Expressão Gênica , MicroRNAs/biossíntese , Nociceptividade , Artrite Reumatoide/patologia , Biomarcadores/metabolismo , Humanos
2.
Neurol India ; 64(6): 1266-1275, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27841198

RESUMO

The main purpose of this review was to expound upon the mechanism of action of Levetiracetam (LEV) as an antiepileptic, neuroprotective, and hyperalgesic drug. LEV is a second-generation anti-epileptic drug (AED) that is approved for clinical use as monotherapy and may also be used for adjunctive treatment of patients with seizures. Several researchers have recommended LEV as a treatment option in different diseases causing neuronal damage, and recently, LEV has been used as an antihyperalgesic drug. LEV exhibits favorable characteristics, including a low potential for interaction, a short elimination half-life, and has neither active metabolites nor major negative effects on cognition. This has generated many new research avenues for the utilization of this drug. However, the precise mechanism of action of LEV has not been fully elucidated. In this review, a search was conducted on PubMed, ProQuest, EBSCO, and the Science Citation index for studies evaluating the effects of LEV as an antiepileptic, neuroprotective, and hyperalgesic drug. A total of 32 studies related to the use of LEV suggested different mechanisms of action, such as binding to the synaptic vesicle glycoprotein 2A (SV2A) protein, inhibition of Ca2+ N-type channels, and its presence as a neuromodulator. These studies concluded that the pharmacodynamics of LEV should be viewed as a single pathway, and should not be based on specific molecular targets that depend on the physiological or pathological conditions prevalent at that time.


Assuntos
Anticonvulsivantes/farmacologia , Fármacos Neuroprotetores/farmacologia , Piracetam/análogos & derivados , Anticonvulsivantes/uso terapêutico , Epilepsia/tratamento farmacológico , Humanos , Levetiracetam , Dor/tratamento farmacológico , Piracetam/farmacologia , Piracetam/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...